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We discuss the role of the proximity force approximation in deriving limits to the existence of

Yukawian forces—predicted in the submillimeter range by many unification models—from Casimir force

experiments using the sphere-plane geometry. Two forms of this approximation are discussed, the first

used in most analyses of the residuals from the Casimir force experiments performed so far, and the

second recently discussed in this context in R. Decca et al. [Phys. Rev. D 79, 124021 (2009)]. We show

that the former form of the proximity force approximation overestimates the expected Yukawa force and

that the relative deviation from the exact Yukawa force is of the same order of magnitude, in the realistic

experimental settings, as the relative deviation expected between the exact Casimir force and the Casimir

force evaluated in the proximity force approximation. This implies both a systematic shift making the

actual limits to the Yukawa force weaker than claimed so far, and a degree of uncertainty in the �-� plane

related to the handling of the various approximations used in the theory for both the Casimir and the

Yukawa forces. We further argue that the recently discussed form for the proximity force approximation is

equivalent, for a geometry made of a generic object interacting with an infinite planar slab, to the usual

exact integration of any additive two-body interaction, without any need to invoke approximation

schemes. If the planar slab is of finite size, an additional source of systematic error arises due to the

breaking of the planar translational invariance of the system, and we finally discuss to what extent this

may affect limits obtained on power-law and Yukawa forces.
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I. INTRODUCTION

Several unification schemes merging gravity and the
standard model of strong and electroweak interactions
predict the existence of short-range forces with coupling
strength of the order of Newtonian gravity [1]. Efforts to
evidence a fifth force have been envisaged regardless of any
concrete unification scheme since various decades [2,3],
and there are compelling reasons to improve our limits
especially in the largely unexplored submillimeter range.
Constraints in both coupling and range for these interac-
tions have been obtained with various experimental setups,
including the recent configurations using a disk-shaped
torsional balance parallel to a rotating flat surface [4–7],
or micromechanical resonators in a parallel-plane geome-
try [8–13]. Because of the surge of activity in the study of
Casimir forces, limits have been also given in the submi-
crometer range based on the level of accuracy between
Casimir theory and experiment. However, unlike the case
of experiments performed between bodies kept at larger
distances, the use of the parallel-plane geometry on such
small length scale has been proven to be challenging in
terms of parallelism [14–16], and therefore the attention
has been focused on the analysis of the residuals in the
Casimir theory-experiment comparison involving the
sphere-plane configuration.

Dedicated efforts to obtain limits from sphere-plane
Casimir experiments have involved the use of the so-called

proximity force approximation (PFA) [17–23], which al-
lows one to map the force Fsp between a sphere of radius R

and a plane located at a distance a from the sphere into the
energy per unit area Epp of the parallel plate configuration,

namely, FspðaÞ ¼ 2�REppðaÞ [24]. This approximation is

believed to be valid in the limit a � R and to hold with a
high degree of accuracy for forces between entities con-
centrated on the surfaces, such as electrostatic or Casimir
forces between conductors [25–27]. Obviously, in order to
test how well PFA approximates the exact force, one needs
either to compute the interaction exactly or at least to
assess reliable bounds. For the electrostatic sphere-plane
interaction, the exact analytical result for the force is well
known and has a closed form [28], such that deviations
from PFA can be readily analyzed. For the Casimir sphere-
plane interaction, the exact force has been computed only
very recently, both for ideal [29–31] and real metallic
plates [32]. Available analytical and numerical results
seem to indicate that, at least for zero temperature and
within the used plasma model, deviations from PFA ap-
plied to the sphere-plane Casimir interaction are small, of
the order of 0.1% or higher, in recent Casimir experiments
aiming to put limits to Yukawa interactions.
It has been argued in [33] that the application of the PFA

to forces acting between entities embedded in volumetric
manifolds, such as gravitational forces or their putative
short-range components, is in general invalid and has to
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be carefully scrutinized in each specific configuration.
Based on this suggestion, a recent reanalysis of the PFA
in the case of gravitational and Yukawian forces has been
discussed in [34]. The main conclusion of this reanalysis is
that ‘‘a confusion with different formulations of the PFA’’
existed in the previous literature, and that ‘‘care is required
in the application of the PFA to gravitational forces.’’ This
confusion is stated to originate from a specific form of the
PFA used so far, to be contrasted with a more general
formulation of the PFA. In [34] it is also claimed that the
difference between the two PFAs is negligible in the actual
configuration used to give the allegedly best limits ob-
tained in the 100 nm range [21,22].

In this paper we further discuss the meaning of the PFA
in the case of volumetric forces. We argue that the discrep-
ancy between the two forms of the PFA is a significant
source of error in the determination of bounds on parame-
ters of Yukawian forces from force residuals in Casimir
sphere-plane experiments performed so far that used PFA
to model such non-Newtonian forces. We then show that
the general form for the PFA discussed in [34] is simply a
different choice of the infinitesimal volume for integrating
the force due to an extended object, and coincides with the
exact result only in the case when one of the two surfaces is
an infinite planar slab (or semispace). The level of approxi-
mation in using the two PFAs for Yukawa forces in the
sphere-plane geometry is of the same order of magnitude
as the Casimir theory-experiment comparison that uses
PFA to compute the sphere-plane Casimir force (as already
noticed in [34]). Therefore, since such a comparison pro-
vides force residuals that are in turn compared against the
theory of Yukawa forces to obtain limits on its �-� pa-
rameter space, the use of these subsequent PFA approx-
imations of comparable level of approximation provides a
possible source of systematic error, not carefully accounted
for so far. We also argue that other volumetric effects not
directly related to the PFA, such as the finite size of the
planar surface used in the actual experiments, may provide
a source of systematic error not taken into account so far,
which strongly affects the limits to power-law forces
[23,35], but should not be a major source of concern on
limits to Yukawa forces. We believe that, considering the
various number of complications related to the sphere-
plane geometry, upgraded versions of parallel plate experi-
ments such as the ones discussed in [8–13] could provide
limits on Yukawian and power-law forces in the submi-
crometer range more immune to a set of systematic errors
characteristic of the sphere-plane configuration.

II. PROXIMITY FORCE APPROXIMATIONS AND
VOLUMETRIC FORCES BETWEEN EXTENDED

OBJECTS

In order to introduce the notation and as a prelude to our
discussion, we briefly summarize the results contained in
[34]. The actual experimental configuration used in [21] is

not a parallel plate geometry, rather it is a sphere-plane
geometry, and the PFA is used to map the force between a
sphere and a plane Fsp into the energy per unit area of the

parallel plate configuration Epp

FspðaÞ ¼ 2� �REppðaÞ; (1)

where �R ¼ ffiffiffiffiffiffiffiffiffiffiffi
RxRy

p
is the geometric average of the princi-

pal radii of curvature of the spherical surface evaluated at
its point of minimum distance from the plane. In the
experiment reported in [21], the force is measured by
looking at the frequency shift of a mechanical resonator,
as customary in atomic force microscopy [36], and as first
reported in the context of Casimir force measurements in
[37]. The frequency shift is proportional to the gradient of
the force, and therefore

��2 ¼ 1

4�2m

@Fsp

@a
¼ �R

2�m

@Epp

@a
¼ �R

2�m
Ppp; (2)

where Ppp is the plane-plane pressure, andm is the mass of

the resonator. The measure of the frequency shift can then
be mapped, via use of Eq. (1), into the equivalent pressure
exerted between two fictitious parallel plates mimicking
the actual sphere-plane geometry. Within the validity of
Eq. (1), this is a valid assumption for the case of forces
acting between surfaces, such as electrostatic forces be-
tween conductors or Casimir forces.
A first sign of the fact that there can be issues with the

PFA in dealing with volumetric forces, such as the hypo-
thetical Yukawian forces of gravitational origin, is man-
ifested by noticing that the exact formula for the Yukawa
force between two infinite parallel slabs depends on the
thicknesses of both slabs, which implies that the PFA
formula applied to the volumetric Yukawa force in the
sphere-slab configuration also depends on both thicknesses
(and on the sphere radius). However, the exact sphere-slab
force obviously depends only on the slab thickness and on
the sphere radius—it does not, and cannot, depend on the
thickness of the metaphysical slab introduced in the virtual
mapping to the parallel geometry. Indeed, consider the
Yukawa potential energy for two pointlike masses m1

and m2, located at positions r1 and r2, respectively,

UYuðr1; r2Þ ¼ ��Gm1m2

e�jr2�r1j=�

jr2 � r1j ; (3)

where, as usual, the strength of the Yukawa interaction is
parametrized in terms of Newton’s gravitational constantG
through a dimensionless quantity �, and � is its range.
Assuming that the Yukawa interaction is additive, once
integrated over two infinite, homogeneous parallel slabs
separated by a distance a, one derives the corresponding
pressure PYu,

PYuðaÞ ¼ �2��G�1�2�
2e�a=�ð1� e�D1=�Þ

� ð1� e�D2=�Þ; (4)
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where D1 and D2 indicate the thickness of each slab, and
�1 and �2 their densities. The exact Yukawa interaction in
the sphere-slab geometry can be readily computed, assum-
ing additivity. The result is [34]

Fexact
Yu ðaÞ ¼ �4�2�G�1�2�

3Re�a=�ð1� e�D1=�Þ
� ð1� �=Rþ e�2R=� þ e�2R=��=RÞ: (5)

As we mentioned above, most recent experimental works
on limits to extra-gravitational forces from sphere-plane
Casimir measurements used the usual PFA. In this approxi-
mation, the Yukawa force between a homogeneous sphere
and an infinite homogeneous slab of thickness D1 is

FPFA
Yu ðaÞ ¼ 2�RPYuðaÞ

¼ �4�2�G�1�2�
3Re�a=�ð1� e�D1=�Þ

� ð1� e�D2=�Þ: (6)

In this case one needed to consider, in order to map the
actual sphere-plane configuration into a parallel plate ge-
ometry, a fictitious upper plate of thickness D2 large
enough, i.e. much larger than the explored Yukawa range
(D2��). Again, this situation may appear disturbing to
whoever believes that any experiment-theory comparison
should not rely on the introduction of arbitrary parameters
not having a tangible, measurable counterpart in the con-
crete experimental setup. Clearly the PFA prediction
Eq. (6) fails to give the exact result Eq. (5) in the range
of its supposed validity, a�R, and it is necessary to
assume � � R, D2 in order for PFA to tend to the exact
result. But in this limit the volumetric nature of the inter-
action is lost, since the atoms in the ‘‘bulk’’ no longer
contribute appreciably to the total force. Likewise, PFA
fails to give the exact Newtonian interaction between the
sphere and the slab, even in the range of its supposed
validity a � R.

The authors of [34] consider the most general formula-
tion of PFA [38], that we will call the ‘‘exact’’ PFA formula
(EPFA) to distinguish it from the usual PFA approxima-
tion, described above. In the EPFA the force between two
compact bodies is expressed as the sum of forces between

plane parallel surface elements dxdy. The z component of
the force is

FEPFA
z ðaÞ ¼

ZZ
�
dxdyPðx; y; zðx; yÞÞ; (7)

where Pðx; y; zðx; yÞÞ is the pressure between two parallel
plates at a local distance zðx; yÞ ¼ z2ðx; yÞ � z1ðx; yÞ> 0
[ziðx; yÞ are the surfaces of the two bodies], a is the
distance between them [smallest value of zðx; yÞ], and �
is the part of the ðx; yÞ plane where both surfaces are
defined (see Fig. 1). The EPFA prediction for the
Yukawa force between a sphere and an infinite planar
slab is [34]

FEPFA
Yu ðaÞ ¼ �4�2�G�1�2�

3Re�a=�ð1� e�D1=�Þ
� ð1� �=Rþ e�2R=� þ e�2R=��=RÞ; (8)

which coincides with the exact result of Eq. (5). In Fig. 2
we plot the ratio �

� ¼ FEPFA
Yu

FPFA
Yu

¼ 1� �=Rþ e�2R=� þ e�2R=��=R

1� e�D2=�
(9)

as a function of the Yukawa parameter �, for different
values of the sphere radius keeping fixed D2 ! 1 (left
plot), and for different values of D2 keeping fixed the
sphere radius at R ¼ 150 �m (right plot). Note that � is
independent of the sphere-slab separation a. When D2 �
�, as surely realized in the left plot, PFA always over-
estimates the EPFA result, i.e. �< 1 (similarly to how the
PFA overestimates the exact Casimir force in the sphere-
plane geometry). Note also that whenD2 � � the atoms in
the bulk of the two bodies do not contribute appreciably to
the Yukawa force, thereby making it effectively of a sur-
face character (i.e., nonvolumetric), as in the case of
Casimir or electrostatic forces. Instead, for values of D2 ’
10� (or smaller) the volumetric character of the Yukawa
interaction is manifest, and � is no longer less than 1 (right
plot). In this case the PFA applied to Yukawa forces is
invalid and in the data analysis one should at least declare
the value of D2 imagined for which the limits are assessed.
Overestimating the Yukawa force leads to stronger limits
for the coupling constant� for a given �with respect to the

a

x

z

R R

a

x

z

FIG. 1 (color online). Schematics of the integration for the sphere-slab configuration according to the usual slicing along horizontal
infinitesimal slabs used for the exact calculation (left panel), and slicing using vertical columns (right panel) as used in the EPFA
calculation. As far as the surface facing the sphere is an infinite plane (and therefore translational invariance of the potential V due to
the plane being satisfied), these merely correspond to two different and equivalent choices for the integration volume.
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proper use of the EPFA. Considering the relatively small
margins of improvement reported recently (see for instance
Fig. 3 in [21]), a systematic shift due to the use of the PFA
instead of the EPFA may lead to significant changes for the
exclusion region in the �-� plane. Both plots show that the
use of PFA instead of EPFA is unreliable especially in the
region near or above � ¼ 100 nm. Unfortunately the re-
gion in between 100 nm and a few �m is also the one
directly explored with the Casimir force experiments, since
actual measurements take place in this range of distance
between the involved objects. It is known that the best
limits on Yukawa interactions can be set for � of the order
of the actual explored distance between the two bodies ’ a,
and the extrapolation of the measurements to smaller � is
affected by the fast growth of the bounds as � / expða=�Þ.

The fact that the EPFA Eq. (8) gives the correct exact
results for the Yukawa (and also gravitational) force in the
sphere-plane configuration is in fact a trivial consequence
of the additivity of these interactions and of the transla-
tional invariance of the infinite plane surface, the shape of
the second surface (in this case a sphere) being irrelevant.
Indeed, the EPFA is just a different parametrization of the
exact formula of the addition of forces between particles.
On one hand, the exact interaction energy between a test
mass and an infinite slab (or half-space) depends only on
the normal coordinate z, being independent of the in-plane
coordinates x, y by symmetry. Hence, the potential due to
the infinite slab is Vðx; y; zÞ ¼ VðzÞ. For a body (e.g. a
sphere) of mass density �ðx; y; zÞ, additivity implies that
the total interaction energy can be obtained as

Ubody ¼
Z

dxdydz�ðx; y; zÞVðzÞ; (10)

and similarly for the force. Since V depends only on z, it is

convenient to compute the integral by adding forces at
different slices at constant z, i.e. considering infinitesimal
slices in z, then evaluating first the potential energy of a
slice of the body parallel to the plane at a distance z

WðzÞ ¼
Z

dxdy�ðx; y; zÞVðzÞ; (11)

and then integrating along z the quantityWðzÞ, one obtains
the exact expression for the body-plane interaction Ubody

(see Fig. 1, left panel). On the other hand, the EPFA states
that the interaction energy between the body and the plane
is obtained from slicing the body into cylinders perpen-
dicular to the plane (see Fig. 1, right panel) and integrating
the cylinder-plane interaction energy along the portion of
the body that faces the plane (i.e., one must integrate over
the surface � on the plane that is the normal shadow of the
body). The potential energy of this column of the body
centered around ðx; yÞ is

Gðx; yÞ ¼
Z

dz�ðx; y; zÞVðzÞ; (12)

and then integrating along x, y the quantity Gðx; yÞ, one
gets the EPFA expression for the body-plane interaction
Ubody (see Fig. 1, right panel). Again, since the interaction

is additive and it does not depend on the x, y coordinates,
this integral is exactly equal to the previous one: we are
simply integrating the same function UðzÞ over the body
using a different parametrization of the volumetric integral.
The same holds for the force between any body (not
necessarily a sphere) and an infinite slab (see also [39]).
However, when none of the two bodies is an infinite slab

[e.g., two spheres of radii Ri, mass densities �iðx; y; zÞ,
separated by a distance a along the z direction], transla-
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FIG. 2 (color online). Comparison between the EPFA and the PFAversus the range of the Yukawian force for a homogeneous sphere
above an infinite homogeneous slab. (Left panel) Plot of � versus � in the case of spheres of radius R ¼ 150, 100, and 50 �m, in the
limit of D2 ! 1. (Right panel) Same plot but for a sphere of radius 150 �m and finite values of the metaphysical parameter D2

representing the thickness of the upper slab introduced in [34] for the comparison of the actual sphere-plane geometry to the parallel
plate case using the PFA.
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tional invariance along x-y is obviously broken, and the
EPFA does not coincide with the exact formula. The exact
interaction energy Uðx; y; zÞ between a source body and a
test mass at position ðx; y; zÞ can be easily computed. For
instance, for the spherical source body U depends only on

r ¼ ðx2 þ y2 þ z2Þ1=2, with the origin of coordinates at the
center of the sphere. Integrating Uðx; y; zÞ over the volume
of the second body one gets the exact result. For example,
for the two-spheres case the gravitational energy depends
only on the center-to-center distance and scales as 1=a. Let
us compare this known exact result with the EPFA predic-
tion. One slices each body in cylindrical slabs, calculates
the slab-slab interaction energy UssðzÞ that depends on the
local distance z between the slabs, and finally one adds up
these contributions over the shadow of one of the bodies on
the other one. It is clear that EPFA cannot give the exact
result since Uss is translational invariant but the exact U is
not, and EPFA fails to predict the exact 1=a dependency.
Therefore the EPFA formula for the energy and force of
additive two-body interactions is a trivial reparametriza-
tion of the exact result when one of the bodies is an infinite
plane (or slab). For other geometries, EPFA fails to give the
correct result as a consequence of the broken translational
invariance. In particular, this is the case of a sphere above a
finite-size slab, like in experiments, especially those in-
volving slabs of typical sizes comparable to those of the
sphere.

In the experimental configuration used in [21] various
substrates are present on the sphere and on the slab.
Imagining that the layered slab is infinitely long, the
Yukawa potential at a distance z from the top layer due
to the slab is

V�
YuðzÞ ¼ �2��G�2e�z=�½�00

1e
��00

1
=�ðe�00

1
=� � 1Þ

þ �0
1e

�ð�00
1þ�0

1Þ=�ðe�0
1=� � 1Þ

þ �1e
�ð�00

1
þ�0

1
þD1Þ=�ðeD1=� � 1Þ�: (13)

Here �00
1 and �00

1 are the thickness and density of the top

layer,�0
1 and �

0
1 are the thickness and density of the middle

layer, and D1 and �1 and the thickness and density of the
lower part of the layered slab. The last factor in Eq. (13)
can be considered a sort of effective density of the planar
surface, in which the various densities are weighted by
their thicknesses in units of � (indeed yielding their arith-
metic average in the case of �0, �00, and D1 � �).
We can compute the exact expression for the Yukawa

interaction energy between the layered infinite slab and a
layered sphere of mass density �2ðx; y; zÞ using Eq. (10).
As discussed above, this exact computation will trivially
coincide with the EPFA expression. Let R and �2 be the
radius and density of the sphere, �0

2 and �0
2 the width and

density of the inner layer on the sphere, �00
2 and �00

2 the
width and density of the outer layer, and a the distance
from the outer layer of the sphere to the top of the layered
slab. The total EPFA Yukawa interaction energy can be
written as a sum of contributions from each layer on the

sphere, U�;EPFA
Yu ¼ U�

2 þU0�
2 þU00�

2 , where

U�
2 ¼ 2��2

Z R

0
r2dr

Z �

0
d	 sin	�2V

�
YuðzÞ;

U0�
2 ¼ 2��0

2

Z Rþ�0
2

R
r2dr

Z �

0
d	 sin	�0

2V
�
YuðzÞ;

U00�
2 ¼ 2��00

2

Z Rþ�0
2
þ�00

2

Rþ�0
2

r2dr
Z �

0
d	 sin	�00

2V
�
YuðzÞ:

Note that, instead of using horizontal or vertical slicings
for the volume integration as done in Fig. 1 for the non-
layered case, we use spherical slicings more appropriate
for the layered sphere case. Here z ¼ aþ �00

2 þ �0
2 þ R�

r cos	 denotes the vertical position of any infinitesimal
mass element inside the layered sphere. Computing these
integrals we obtain the EPFA expression for the Yukawa
interaction energy between the layered infinite slab and the
layered sphere

U�;EPFA
Yu ðaÞ ¼ �4�2�G�4Re�ðaþ�00

2þ�0
2Þ=�f�00

1e
��00

1=�ðe�00
1=� � 1Þ þ �0

1e
�ð�00

1þ�0
1Þ=�ðe�0

1=� � 1Þ

þ �1e
�ð�00

1þ�0
1þD1Þ=�ðeD1=� � 1Þg

�
�2

�
1� �

R
þ e�2R=� þ �

R
e�2R=�

�
þ �0

2

��
1� �

R

�
ðe�0

2=� � 1Þ þ �0
2

R
e�

0
2=�

þ e�2R=�

��
1� �

R

�
ð1� e��0

2
=�Þ þ �0

2

R
e��0

2
=�

��
þ �00

2

��
1� �� �0

2

R

�
e�

0
2
=�ðe�00

2
=� � 1Þ þ�00

2

R
eð�0

2
þ�00

2
Þ=�

þ e�2R=�

��
1þ �þ�0

2

R

�
e��0

2
=�ðe��00

2
=� � 1Þ þ�00

2

R
e�ð�0

2
þ�00

2
Þ=�

���
: (14)

The EPFA expression for the corresponding force is
F�;EPFA
Yu ¼ �@U�;EPFA

Yu =@a ¼ ��1U�;EPFA
Yu . Note that

when there are no layers on the slab (�0
1 ¼ �00

1 ¼ 0) and
no layers on the sphere (�0

2 ¼ �00
2 ¼ 0), then the expres-

sion for the force that follows from Eq. (14) is identical to
Eq. (5). On the other hand, the PFA expression for the force

between the layered infinite slab and the layered sphere is
F�;PFA
Yu ¼ 2�RP�

Yu, where P
�
Yu is the pressure between two

parallel layered slabs, one identical to the previous slab,
and a metaphysical slab of width D2 and density �2,
covered by two layers of widths and densities identical to
the ones of the layered sphere above. Using Eq. (4) for the
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various pairs of layers in the different slabs, we calculate the PFA expression for the layered sphere-slab force

F�;PFA
Yu ðaÞ ¼ �4�2�G�3Re�a=�f�1ð1� e�D1=�Þ½�2e

�ð�0
1
þ�00

1
þ�0

2
þ�00

2
Þ=�ð1� e�D2=�Þ þ �0

2e
�ð�0

1
þ�00

1
þ�00

2
Þ=�ð1� e��0

2
=�Þ

þ �00
2e

�ð�0
1þ�00

1 Þ=�ð1� e��00
2=�Þ� þ �0

1ð1� e��0
1=�Þ½�2e

�ð�00
1þ�0

2þ�00
2 Þ=�ð1� e�D2=�Þ

þ �0
2e

�ð�00
1
þ�00

2
Þ=�ð1� e��0

2
=�Þ þ �00

2e
��00

1
=�ð1� e��00

2
=�Þ� þ �00

1 ð1� e��00
1
=�Þ½�2e

�ð�0
2
þ�00

2
Þ=�ð1� e�D2=�Þ

þ �0
2e

��00
2
=�ð1� e��0

2
=�Þ þ �00

2 ð1� e��00
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To assess the effect of the multilayered structures, we have
evaluated the ratio ��=� with �� ¼ F�;EPFA

Yu =F�;PFA
Yu and

� ¼ FEPFA
Yu =FPFA

Yu , as a function of � for three radii of
curvatures of the sphere, assuming for the PFA calculation
a value of the metaphysical parameter D2 ¼ 108 �m (see
Fig. 3, left panel). The effect of multilayers is to slightly
flatten �� as compared to � in the homogeneous case
(Fig. 2, left panel). The dependence of the same ratio for
a fixed value of R and different values of the metaphysical
parameter D2 is shown in Fig. 3, right panel. Note that ��

is independent of the sphere-slab separation, just as � is.
As discussed in the Introduction, the PFA used in all

recent sphere-plane Casimir experiments for the Casimir
theory-experiment comparison is expected to approximate
the exact Casimir force within 0.1%. This expectation
comes from recent analytical approaches to the sphere-
plane Casimir interaction [29–32] that, although formally
exact, require the evaluation of the determinant of an
infinite-dimensional matrix, which becomes a numerically
demanding task, especially in the PFA regime, a � R,
where larger and larger matrices are needed for conver-
gence. Numerical computations of the exact, zero-
temperature sphere-plane Casimir force using parameters

for metallic spheres (R ¼ 10 �m and optical response
modeled by the simple plasma model with plasma wave-
length �p ¼ 136 nm) show that deviations from PFA can

be as large as 20% for the smallest a=R � 0:5 studied
numerically (see Fig. 2 of [32]). An extrapolation to
smaller values of a=R using a cubic polynomial fit of the
numerical data is also provided in [32]. Assuming one can
use it for the recent Casimir sphere-plane experiment [21]
(with a radius of curvature R ¼ 151:3 �m) gives a devia-
tion from PFA of the order of 0.1% at the smallest value of
a=R � 0:001 reached in the experiment (amin � 160 nm).
Since the limits to non-Newtonian forces are obtained
using the residuals in the Casimir theory-experiment com-
parison, in order to meaningfully replace the exact formula
of the Yukawa force with its PFA approximation, the level
of accuracy between these two should be therefore a small
fraction, for instance 10% of the accuracy with which the
Casimir force is controlled by using PFA rather than the
exact expression for the sphere-plane Casimir force. If this
condition is not fulfilled, the derived limits could be off
also by a large order of 100% correction. However, target-
ing a 10% accuracy level with respect to the Casimir
theory-experiment accuracy implies deviations from �¼1
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FIG. 3 (color online). Ratio ��=� for the comparison of the EPFA and PFA schemes for the multilayered and corresponding
homogeneous situation [obtainable by using Eqs. (14) and (15) with �0

2 ¼ �00
2 ¼ 0, �0

2 ¼ �00
2 ¼ 0, and replacing R with Rþ�0

2 þ
�00

2 ]. (Left panel) Ratio ��=� versus the range of the Yukawian force for different values of the radius of the inner sphere. The

parameters for the layered sphere are �0
2 ¼ 10 nm, �00

2 ¼ 180 nm, �2 ¼ 4:1 g=cm3, �0
2 ¼ 7:14 g=cm3, and �00

2 ¼ 19:28 g=cm3. The

parameters for the layered slab are D1 ¼ 3:5 �m, �0
1 ¼ 10 nm, �00

1 ¼ 210 nm, �1 ¼ 2:33 g=cm3, �0
1 ¼ 7:14 g=cm3, and �00

1 ¼
19:28 g=cm3. In the evaluation of the PFA force F�;PFA

Yu , a value of the metaphysical parameter D2 ¼ 108 �m is used. (Right panel)

Ratio ��=� versus the range of the Yukawian force for different values of the metaphysical parameter D2 and a radius of curvature of
R ¼ 150 �m.
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of 0.01%, which can be obtained, as seen in Fig. 2, only in
the range of � below 100 nm. The presence of substrates
with different densities tends to mitigate the discrepancy
between the EPFA and the PFA, as seen by the curves in
Fig. 3, but there is an irreducible systematic factor even at
small �. Indeed, in the limit � ! 0, we have �� � 1þ
ð�0

2 þ �00
2 Þ=R, that, in the case of the experiment reported

in [21], is equal to 1.001 26, i.e. a correction already equal
to 0.126%.

All these systematic sources of uncertainty could be
even larger in experiments for which the radius of curva-
ture of the sphere is not adequately optimized. Indeed, the
use of spheres with smaller radius of curvature is affected
more by this effect, as emphasized in the left plot of Fig. 2
and in Fig. 3 for the cases of R ¼ 50 �m and 100 �m.
Moreover, for small spheres the PFA approximation to the
Casimir force itself is less accurate. The use of spheres
with large radius of curvature is beneficial to reduce these
sources of error in the experiment-theory comparison, but
may face experimental issues recently identified in [40]
and interpreted as due to deviations from an ideal spherical
geometry (as proposed in [41]) and/or a consequence of
larger sensitivity to electrostatic patch effects [33,40].

III. BREAKING THE X-Y TRANSLATIONAL
INVARIANCE

In the previous section we have seen that translational
invariance is crucial to make the EPFA reproduce the exact
result, but in actual experiments such an invariance is
obviously satisfied only approximately, leading to an addi-
tional source of systematic error related to the finite size of
the surfaces, as we discuss here for both power-law forces,
and for Yukawa forces. Instead of computing the more
involved problem of the gravitational force between a
sphere and a finite-size slab, we consider here the simpler
case of the gravitational force acting on a pointlike test
mass m2 above the center of a disk of thickness D1, radius
Rd, and mass density �1. We obtain

Fgðz2Þ¼�2�G�1m2

Z 0

�D1

dz1
Z Rd

0
rdr

z2� z1

½r2þðz2� z1Þ2�3=2
¼�2�G�1m2fD1þðR2

dþ z22Þ1=2
�½R2

dþðz2þD1Þ2�1=2g; (16)

where z2 is the distance between the test mass and the disk.
The force becomes independent of Rd only in the limit
Rd � D1, z2 (in which case it is also independent of z2). In
order to assess the different forces acting on the various
parts of a sphere in the presence of a disk of finite radius we
evaluate the ratio between the forces exerted at the point of
the sphere closest to the plane (z2 ¼ a) and the farthest
point (z2 ¼ aþ 2R). This quantity is simple to evaluate
yet provides a practical figure of merit for how much the
extended geometry of the sphere is affected by the finite
size of the disk. This gives a ratio 
g ¼ Fgðz2 ¼

aÞ=Fgðz2 ¼ aþ 2RÞ:


g ¼ �þ ½�2 þ 2�1=2 � ½ð�þ �Þ2 þ 2�1=2
�þ ½ð2þ �Þ2 þ 2�1=2 � ½ð2þ �þ �Þ2 þ 2�1=2 ;

(17)

where we have defined � � D1=R, � � a=R, and  �
Rd=R.
This is a large correction, of the order of 300%, if a disk

of radius equal to twice the radius of the sphere (Rd ¼ 2R),
in a geometrical setting not dissimilar from the one used in
[21], is considered. Since the experiment in [21] is anyway
insensitive to the gravitational force, like any experiment
performed in the micrometer range, this is not a major
practical concern. However, in the case of a more generic
power law such as FN ¼ �K�1m2=r

N we get

FNðzÞ ¼ 2�K�1m2

ðN � 1ÞðN � 3Þ fðzþD1Þ3�N � z3�N

þ ðR2
d þ z2Þð3�NÞ=2 � ½R2

d þ ðzþD1Þ2�ð3�NÞ=2g;
(18)

apart from the cases of N ¼ 1 and N ¼ 3 in which loga-
rithmic integrations occur. In these two cases one obtains

FN¼1ðzÞ ¼ �K�1m2

2
fðz2 þ R2Þ lnðz2 þ R2

dÞ
� ½ðzþD1Þ2 þ R2

d� ln½ðzþD1Þ2 þ R2
d�

þ ðzþD1Þ2 lnðzþD1Þ2 � z2 lnz2g; (19)

which in the limit Rd ! 1 becomes independent of z, and

FN¼3ðzÞ ¼ ��K�1m2

2
ln

�ðz2 þ R2
dÞðzþD1Þ2

z2½ðzþD1Þ2 þ R2
d�
�
; (20)

which in the limit Rd ! 1 behaves as lnð1þD2
1=z

2Þ.
Notice that the fact that the force is independent on the
distance from an infinite plane is only characteristic of
forces scaling with the inverse square of the distance,
such as the gravitational force, making the integration of
the force trivially geometrical. In the general case n � 2,
even in the situation of a sphere in front of an infinite plane,
different points of the sphere will feel different forces, with
the farthest point feeling smaller (larger) force for a power-
law exponent larger (smaller) than 2, as a consequence of
the interplay between the solid angle and the distance
scaling of the force, which makes peculiar the N ¼ 2
case as expressed by the Gauss law. This is shown in
Fig. 4 (left panel) for the cases of N ¼ 1, 2, 3, and 4,
with the ratio 
N between the forces evaluated at the top
and at the bottom of the sphere, and in Fig. 4 (right panel)
by showing the same ratio versus the power-law exponent
for different values of the radius of the disk. Therefore,
when considering power-law forces as the ones discussed
for instance around Eq. 2 in [23], one should then take
carefully into account the finite size of the plane in deriving
limits to these forces [42].
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Finally, we discuss the effect of the finite size of the
planar surface in the case of Yukawa forces. The potential
energy of a pointlike particle of massm2 located at height z
along the axis of a planar disk surface of radius Rd, density
�1, and thickness D1, is

UYuðzÞ ¼ ��G�1m2

Z R

0
drr

Z 2�

0

Z 0

�D1

½ðz2 � z1Þ2 þ r2�1=2

� e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2�z1Þ2þr2

p
=�

¼�2��G�1m2�
2½e�z=�ð1� e�D1=�Þ

� e�
ffiffiffiffiffiffiffiffiffiffi
z2þR2

d

p
=� þ e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþD1Þ2þR2

d

p
=��; (21)

and the related force is

FYuðzÞ ¼ �@UYu

@z

¼�2��G�1m2�e
�z=�ð1� e�D1=�Þ

�
�
1� z

Rd

e�½1þðz=RdÞ2�1=2Rd=�þz=�

½1þ ðz=RdÞ2�1=2ð1� e�D1=�Þ

þ zþD1

Rd

e�½1þððzþD1Þ=RdÞ2�1=2Rd=�þz=�

½1þ ððzþD1Þ=RdÞ2�1=2ð1� e�D1=�Þ
�
;

(22)

where the finite-size terms appear as corrections to the
indefinite plane formula originating by the first term alone.
As before, we introduce as figure of merit the ratio 
Yu ¼
FYuðz2 ¼ aÞ=FYuðz2 ¼ aþ 2RÞ. This ratio is very large
for realistic configurations, expressing the short-range na-
ture of the force. Indeed, even in the infinite plane limit we

have a ratio of 
Yu ¼ e2R=� ’ e3000 in the case of a sphere
of radius R ¼ 150 �m at � ¼ 0:1 �m. The dependence

on the disk radius become significant only at values of �
comparable to the radius of the sphere, as shown in Fig. 5.
The presence of suppression factors for the farthest point of
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FIG. 5 (color online). Plot of the ratio 
Yu between the
Yukawa force exerted at the closest point of the sphere from
the disk and the force exerted at the farthest point, versus the
radius of the disk Rd constituting the planar surface of finite size,
for three different values of the Yukawa range �. As before, we
assume a radius of the sphere equal to R ¼ 150 �m, a sphere-
plane distance of a ¼ 100 nm, and the center of the sphere right
above the center of the disk. The values of � are chosen to be
100, 500, and 1000 �m. In the last case the force may be
considered as a long range one and the farthest point on the
sphere is also contributing almost as much as the closest one. For
� progressively smaller than the radius of the sphere the ratio

Yu gets larger and larger and the dependence on Rd is not
appreciable.
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large Rd limit. (Right panel) Plot of the ratio 
N versus the exponent of the power force lawN for various radii of the disk Rd. The cross
indicates the ratio 
 ¼ 1 for the case of an exponent N ¼ 2 and an infinite plane; it is provided as a help to the eye to better show the
convergence in the case of N ¼ 2 of 
N to unity with disks of progressively larger radii.
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the form e2R=� makes the Yukawa force very insensitive to
the finite size of the disk (for previous consideration, see
also [43]).

IV. CONCLUSIONS

Our analysis, although confirming some of the results
already discussed in [34], draws quite different conclusions
from the common outcome. In particular, we argue that the
application of PFA to volumetric forces is not rigorous if
considered in its original formulation applied so far to
evaluate the sphere-plane Yukawa interactions in the
most accurate Casimir force experiments reported in [18–
23]. Its application to volumetric forces is instead of a
trivial nature if considered in the exact formulation EFPA
discussed in [34], since the latter is identical to the exact
calculation, just differing in the choice of the infinitesimal
integration volume. We have shown that the usual PFA is
an invalid approximation to compute volumetric forces. In
particular, it does not reproduce in its usual range of
validity exact known expressions for gravitational and
Yukawa interactions in nontranslational invariant geome-
tries, such as sphere-finite size slab or sphere-sphere con-
figurations. The exact PFA is the exact expression for any
additive two-body interaction when one of the bodies is
translational invariant, as is the case for a sphere in front of
an infinite homogeneous slab or half-space. For nontransla-
tional invariant geometries, EPFA also fails to give the
exact result for volumetric interactions, even in the regime
of parameters where it is assumed to be valid, therefore
also being an invalid approximation for volumetric forces.

The difference between the two formulations of the PFA
is shown to affect significantly the limits obtained so far
unless one considers a regime of Yukawa range so small,
� � R, D2, that the approximation of a surface force (i.e.
neglecting the Yukawa force due to the atoms in the bulk of
the two bodies, therefore manifestly of nonvolumetric
character) holds. By using the PFA the Yukawa force is
overestimated and therefore the limits in the �-� plane
become more stringent than by using the exact force esti-
mated via EPFA. Moreover, the use of PFA instead of the
EPFA for the parameters of the experiment supposed to
provide the strongest limits to Yukawian interactions [21]
occurs with an accuracy of the same order of magnitude
with which the exact Casimir force is expected to be also
approximated by the corresponding PFA. On one hand,
since the Casimir theory-experiment comparison provides
force residuals that are in turn compared against the theory
of Yukawa forces to obtain limits on them, the use of these
subsequent PFA approximations of comparable level of

approximation provides a possible source of systematic
error, not carefully accounted for so far. On the other
hand, both Casimir and Yukawa PFAs overestimate the
respective exact forces, and therefore the systematic source
of error introduced by their use might be less critical than
expected on first principles. In any case, it is important to
assess as much as possible both sources of errors or, alter-
natively, to use exact expressions for the Yukawa and
Casimir forces. Furthermore, a systematic source of error
present even in the EPFA scheme for finite-size planar
surfaces has been discussed and shown to be significant
only for power-law forces. Our analysis suggests that
future limits (or reanalysis of experiments already per-
formed) on Yukawian forces should rely upon the use of
the exact expression for the Yukawa force, as performed in
[43,44].
It is also worth pointing out that all the above consid-

erations hold provided that the simple scenario of additive
forces is assumed, which is valid in general for weak forces
among atoms in the low density limit, such that correla-
tions leading to fluctuating forces are negligible. However,
the hypothetical Yukawa forces should be located in a
regime of coupling constants intermediate between the
gravitational (additive) force and the Casimir (nonadditive)
force. It is not understood a priori if the Yukawa force is
weak enough to make the additivity assumption reliable,
and this should be kept in mind in future broad-range
searches of these forces.
Finally, considering the complications emerging in the

sphere-plane geometry due to the presence of previously
unidentified systematics such as the sensitivity to devia-
tions from the ideal spherical geometry [33,40,41,45] and
possible effects of variability of the contact potential with
distance [40,45–49], it may be worth to focus future
Casimir experiments to set bounds on extra-gravitational
forces on the actual parallel-plane geometry, without the
drawbacks of a virtual mapping from the sphere-plane
geometry made explicit in this paper. The stronger force
signal expected for the same distance between the two
surfaces, the reduced sensitivity to distance-dependent
contact potentials due to image charges, the absence of
deviations from a uniform radius of curvature, the exis-
tence of exact mode summation techniques to compute the
Casimir force, the possibility to control parallelism using
recently developed technology [50], and the possibility to
compensate off-line the lack of parallelism by using the
PFA as discussed in [51], all point in the direction to
continue this class of experiments in the actual parallel-
plane configuration, extending below the 10 �m range the
results of the experiments described in [4–13].
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